Featured Products

We focus on the production, development and application of nylon PA6, PA66 reinforcement, toughening, thermal conductivity, heat resistance, flame retardancy and other special modified plastics.
  • PA66 Resin
    PA66 EPR27 Virgin Grade High Impact Modified Nylon 66

    Premium Virgin Grade Nylon PA66: High-quality, unmodified polyamide 66 (PA66) resin with EPR27 formulation, ensuring consistency and superior performance.   Main Applications: Ideal for automotive parts, electronic appliances, power tools, and industrial gears.   Factory Direct Supply: Customizable options available to meet specific processing and performance requirements.

  • Molding Process Glass Fiber Reinforced Material
    PA6 GF30 Natural/Black High Strength GlassFiber Material

    Injection molding grade PA6 GF30 material, reinforced with 30% glass fiber to enhance strength, stiffness, and impact resistance. Available in natural and black color options, suitable for diverse industrial applications. Ideal for automotive parts, electronic appliances, power tools, and industrial equipment, ensuring consistent performance under high-stress conditions. Factory direct supply with customizable formulations to meet various application needs.

  • Engineering Plastic for High Performance
    PA66 GF30 Glass Fiber Reinforced Material for Enhanced Strength and Durability

    Injection molding grade PA66 GF30 material, reinforced with 30% glass fiber to improve tensile strength, stiffness, and impact resistance. Ideal for automotive parts, electronic appliances, power tools, and industrial equipment, ensuring superior performance in demanding environments. Factory direct supply with customizable options to meet diverse application requirements.

  • 30% Glass Fiber Reinforced PA6
    PA6 GF30 FR V0 High Strength Flame Retardant Glass Fiber Reinforced Material

    Injection molding grade PA6 GF30 FR V0 material, reinforced with 30% glass fiber for superior strength and rigidity. Flame retardant with UL94 V-0 certification, providing excellent fire resistance for safety-critical applications. Ideal for automotive parts, electronic appliances, and industrial equipment, ensuring reliable performance under high temperatures. Factory direct supply with customizable formulations to meet diverse application requirements.

  • PA66 GF30 FR V0 Supplier
    PA66 GF30 FR V0 Flame Retardant Glass Fiber Reinforced Material

    Injection molding grade PA66 GF30 FR V0 material, reinforced with 30% glass fiber  for enhanced strength and rigidity.   Flame retardant with UL94 V-0 rating, ensuring high-level fire safety in critical applications.   Ideal for automotive components, electronic appliances, and industrial equipment, offering reliable performance under extreme conditions.   Factory direct supply with customizable formulations to meet various industry requirements.

  • Cold Weather Flexibility
    PA6 Anti-Cold Material Durable & Cold Resistant

    Injection molding grade PA6 material, engineered for superior cold resistance and durability in low-temperature environments. Ideal for automotive parts, outdoor equipment, and industrial applications requiring reliable performance in extreme cold. Factory direct supply with customizable formulations to meet specific application needs.

  • Industrial Tools for Extreme Climates
    PA66 Anti-Cold Material High Impact Resistance

    High-Performance Cold-Resistant Nylon PA66: Specially formulated to maintain flexibility, impact resistance, and structural integrity in low-temperature environments.   Main Applications: Ideal for automotive parts, electronic appliances, outdoor equipment, and industrial components subjected to extreme cold.   Factory Direct Supply: Customizable material formulation to meet specific performance and processing requirements.

  • Nylon 6 YH800 Grade
    PA6 YH800 Virgin Grade High-Performance Nylon 6 Resin

    Premium Virgin Grade Nylon PA6: High-quality, unmodified polyamide 6 (PA6) resin with YH800 formulation, ensuring consistent performance and exceptional durability.   Main Applications: Ideal for automotive parts, electronic appliances, power tools, and industrial components.   Factory Direct Supply: Customizable to meet specific processing and performance requirements.  

About Bocheng
Xiamen Bocheng Plastic Materials Co., Ltd. is a leading modern production enterprise that was founded in 2009 and is located in the Xiamen Special Economic Zone, China. As a company committed to technological innovation and excellence, we integrate research and development, production, and sales in the field of high-performance plastic materials. Over the years, we have established ourselves as a trusted name in the industry, earning several honors including recognition as a Xiamen Municipal High-Tech Enterprise, National High-Tech Enterprise, and an Integrated Standardization Enterprise.
  • Established
    0

    Found

  • Experiences
    0

    Exporting Countries

Nylon Professional Manufacturer

"Provide Strong Guarantees For Meeting Customer Needs And Product Quality."

Latest News & Blog

Stay updated with the latest news and insights from our company. Our blog features industry trends, product innovations, and expert perspectives on nylon materials and more.
  • 31 October 2025
    Our Company Establishes Partnership with Turkey to Expand the Nylon Material Export Market

    In October 2025, our company successfully reached a cooperation agreement with a Turkish client and completed the first export shipment. The goods, consisting of one 40HQ container of modified nylon materials, mark a further step in our company’s market expansion across the Middle East and Europe. As a key bridge between Asia and Europe, Turkey has shown a growing demand for high-performance nylon materials. With consistent product quality, comprehensive technical support, and efficient delivery capability, our company has earned the trust of our customers. This cooperation not only reflects the strong alignment between both parties in material applications but also lays a solid foundation for our continued expansion in the international market. In the future, our company will continue to refine and optimize its product portfolio, enhance supply chain responsiveness, and provide customers with more competitive nylon material solutions.  

  • 02 February 2024
    Xiamen Bocheng Plastic Materials Co., Ltd. Showcases at the 2024 Russian International Plastics and Rubber Exhibition

    The 2024 Russian International Plastics and Rubber Exhibition was successfully held in Moscow from January 23 to 26. As a modern enterprise integrating R&D, production, and sales, Xiamen Bocheng Plastic Materials Co., Ltd. showcased its latest nylon engineering materials at the exhibition, drawing significant attention from a wide range of visitors. Since its establishment in 2009, Bocheng has focused on the production and development of modified products, including reinforced, toughened, heat-conductive, heat-resistant, and flame-retardant nylon PA6 and PA66. At the exhibition, Bocheng presented several innovative products, fully demonstrating its technical capabilities and adaptability to market demands. During the exhibition, Bocheng's team engaged in in-depth discussions with industry experts and business representatives from various countries and regions, exploring future trends in manufacturing and technological innovation. After the exhibition, Bocheng visited one of its clients' factories to gain deeper insight into their production processes and needs. This site visit allowed Bocheng to better understand customer expectations and provide tailored solutions. Bocheng also shared technical consulting services with downstream injection molding manufacturers, including material selection, color appearance, and processing guidance, further strengthening its relationships with customers. Notably, the newly built automated production plant, which Bocheng completed in 2020, will be fully operational in 2024. Equipped with advanced modified pellet extrusion lines from Germany's Leistritz and Kautex, the plant aims to meet the increasingly diverse market demands. Bocheng's products are widely applied in industries such as household appliances, automotive, lighting, and electronics, earning consistent praise from customers. At the exhibition, Bocheng also highlighted the results of its strategic collaboration with South China Normal University, emphasizing its R&D strength in material physical properties, flame-retardant performance, and material analysis. With ISO9001:2015 quality system certification and SGS product environmental certification, Bocheng further guarantees its commitment to product quality. Bocheng would like to thank all the friends who visited its booth at the exhibition. Looking ahead, Bocheng looks forward to meeting again at future exhibitions to continue driving the development and application of nylon engineering materials and to achieve mutually beneficial cooperation and success.

  • 17

    2025-12

    Analysis of Application Mechanism of High Wear-resistant Nylon in Robot Joints and Sliding Components

    With the rapid expansion of industrial and collaborative robots, material requirements for joints and sliding components have become increasingly demanding. High wear-resistant nylon has emerged as a competitive alternative to metals and conventional engineering plastics, offering not only extended service life but also weight reduction, noise suppression, and lower maintenance costs. The wear resistance of advanced nylon materials is derived from synergistic mechanisms at the molecular and tribological levels. During sliding contact, nylon forms a stable transfer film on the counter surface, reducing friction and wear rates. Structural modification and solid lubricant incorporation further enhance performance under boundary or dry friction conditions, making these materials particularly suitable for robotic joints subjected to intermittent motion and high loads. In robotic joint assemblies, wear-resistant nylon is commonly used for bushings, sliders, gears, and liners. These components demand dimensional stability, fatigue resistance, and thermal control. Optimized crystalline morphology and molecular weight distribution help minimize frictional heat generation and maintain precise positioning accuracy. For sliding components such as linear guides and actuator interfaces, high wear-resistant nylon provides vibration damping and noise reduction advantages over metallic counterparts. Its fine and uniform wear debris reduces secondary abrasion, contributing to longer system service life even in contaminated or poorly lubricated environments.  

    Read More
  • 17

    2025-12

    Analysis of Surface Defects of Injection-molded Nylon: Causes and Solutions of Silver Streaks, Gas Marks and Sink Marks

    Surface defects remain a critical challenge in injection molding of nylon materials, as they directly affect aesthetic quality, dimensional stability, and end-user acceptance. Among these defects, silver streaks, flow marks caused by trapped gas, and sink marks are the most frequently observed. Although these phenomena may appear visually similar, their formation mechanisms and control strategies differ substantially and must be analyzed from the perspectives of material behavior, processing conditions, and mold design. Silver streaks typically appear as elongated, silvery lines aligned with the melt flow direction. Their primary cause in nylon systems is the presence of volatile substances, especially moisture. Due to the hygroscopic nature of polyamides, absorbed water rapidly vaporizes under high processing temperatures, forming microbubbles that are stretched by shear forces during injection. These elongated bubbles solidify on the surface, resulting in visible streaks. Inadequate drying, excessive melt temperature, and high shear rates significantly increase the likelihood of this defect. Gas-related flow marks differ from silver streaks in both appearance and origin. They are usually irregular or cloudy patterns formed when trapped air cannot be efficiently evacuated from the mold cavity. Poor venting, excessive injection speed, or low mold temperature can cause the melt front to seal venting paths prematurely, leading to unstable flow behavior. Optimizing vent design, adjusting injection profiles, and maintaining appropriate mold temperatures are essential to mitigate this issue. Sink marks are primarily associated with the semi-crystalline nature of nylon materials. During cooling, crystallization-induced volumetric shrinkage occurs, particularly in thick sections or areas with insufficient packing pressure. If the gate freezes too early or packing time is inadequate, molten material cannot compensate for the volume reduction, resulting in localized depressions. Proper gate design, extended packing phases, and balanced wall thickness are key measures to control sink marks. A comprehensive understanding of moisture sensitivity, crystallization behavior, and melt flow dynamics is essential for effectively controlling surface defects in nylon injection molding. Only through coordinated optimization of materials, processing parameters, and mold structures can consistent surface quality be achieved.

    Read More
  • 10

    2025-12

    Role of Compatibilizers in Nylon Modification: Latest Advances in PA/PP and PA/PC Blends

    Polyamides are widely used engineering plastics, but their performance often needs to be further adjusted by blending with other polymers. Due to polarity differences, most PA-based blends require compatibilizers to ensure stable morphology and mechanical integrity. Recent studies on PA/PP and PA/PC blends have provided new insights into compatibilization mechanisms and material optimization. In PA/PP blends, poor interfacial adhesion caused by large polarity differences leads to severe phase separation. Maleic anhydride-grafted polypropylene (PP-g-MAH) remains the most widely used compatibilizer. Its anhydride groups react with amine end groups of PA, forming stable chemical bonds that strengthen the interface. With deeper research, it has become clear that grafting efficiency, MAH content, and molecular weight distribution significantly influence the final toughness and processability of the blend. Block copolymer compatibilizers represent a newer direction, enabling finer phase dispersion and better toughness. Nanoparticle-assisted compatibilization has also emerged, improving long-term thermal resistance and fatigue behavior of the blends. For PA/PC blends, the challenge lies in mismatched processing temperatures and complex interfacial chemistry. Epoxy-functional compatibilizers have proven highly effective, forming chemical linkages with both PA and PC end groups. As a result, thermal stability, impact strength, and dimensional stability at elevated temperatures have greatly improved. Recent developments focus on reaction rate control, ensuring that compatibilization occurs at lower temperatures to prevent PC degradation. Additives containing silicon or flexible chain segments further enhance transparency, weather resistance, and chemical durability. Compatibilization strategies are becoming increasingly sophisticated, enabling nylon blends to meet the stringent requirements of automotive, electrical, and structural applications.

    Read More

Leave a Message

Leave a Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

Home

Products

WhatsApp

contact